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A series of asymmetrically substituted phthalocyanines conjugated to four different carbohydrate units
has been designed to be used as photosensitisers for potential selective recognition by targeted cells.
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Photodynamic therapy (PDT) is a non-invasive powerful treat-
ment of cancer, based on the tumour-localised generation of sin-
glet oxygen by irradiation of photosensitisers.1 Among the
different types of photosensitisers, appropriately metallated and
substituted phthalocyanines are gaining increasing interest, thanks
to their absorption wavelength fitting the biological window.

In addition to suitable photophysical and photochemical prop-
erties,2 preferential accumulation of the photosensitisers in the
tumour is sought to increase efficiency, leading to the development
of tumour-targeting phthalocyanines and other functionalized
photosensitisers.3 This strategy led to the development of the so-
called third generation of PDT agents, in which the photosensitiser
is covalently bioconjugated.4 Grafting of antibodies, is a common
strategy, recently applied to cationic water soluble porphyrins5

and previously developed on organosoluble,6 sulfonated7 or car-
boxylated8 water-soluble phthalocyanines. Water-solubility is
indeed a challenging property to confer to phthalocyanines,9 and
carbohydrates, even if they are used widely as tumour markers
and tumour promotors10 for many types of molecules, have been
mainly used as biocompatible water-solubilizing substituents of
ll rights reserved.
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phthalocyanines.11 Related, but more simple substitution by glyc-
erol proved to be an even more efficient means to provide water-
solubility to phthalocyanines with no dark cytotoxicity and good
photoinactivation.12 The recent work of Thiem has addressed, from
a more biologically oriented point of view, the advantages of the
phthalocyanine core as a support for several carbohydrate units,
spatially close enough to each other to be likely to mimic their
interactions with lectins.13 The glycoconjugation was achieved on
conveniently octafunctionalized phthalocyanines, either octahydr-
oxylated undergoing coupling with glucopyranosyl isocyanate or
bearing eight alkyne functions submitted to click reaction with
glucopyranosyl azide.14

Two advantages can indeed arise from the use of carbohydrates
as substituents of photosensitisers, in addition to water-solubility:
a potential selective recognition by the targeting cancer cells and/
or an increased uptake due to the high energy requirements of can-
cer cells that consume much more carbohydrate than other cells, as
it is a readily available energy source.

Through a structure–activity relationship approach, we sought
purpose to establish whether carbohydrate substitution of water-
soluble phthalocyanines may lead to their selective recognition.
Thus we designed water-soluble phthalocyanines bearing a single
carbohydrate unit. Water-solubility is provided by three glycerol
units, each attached to an isoindole subunit at the non-peripheral
position, as in our previous work we described their powerful
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Figure 1. UV–vis spectra of 8-Glc recorded at 10 lM concentrations (blue: DMSO,
pink: H2O).
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ability to confer water-solubility to phthalocyanines.12 The
carbohydrate unit is linked to a long spacer, avoiding any steric
disturbance of the macrocycle during the recognition process and
is flexible enough to allow simultaneous multiple carbohydrate
recognition. In this preliminary work, four different carbohydrate
units were grafted: glucose, galactose, lactose and mannose, as they
are among the most commonly encountered. These carbohydrates
bearing a propargyl moiety on their anomeric position were grafted
onto the azido phthalocyanine 5 via click reaction.

We recently described the successful use of the click reaction on
organosoluble Ni(II) phthalocyanines to introduce carbohydrate
units on phthalocyanines bearing an azido group.15 This synthetic
strategy was adopted to prepare the azido phthalocyanine 5 as the
key intermediate for attaching the carbohydrate moieties via the
click reaction.

Formation of the AB3-type asymmetric monohydroxylated
phthalocyanine 3 was the starting point for the synthesis. Com-
pound 3 is prepared by cyclotetramerization of a statistical mix-
ture of phthalonitriles 116 and 2,12 with a 10-fold excess of 2 in
order to limit the number of possible resulting phthalocyanines
(Scheme 1). These conditions led to a mixture of the symmetric tet-
rasolketal-substituted phthalocyanine and the desired asymmetric
3 in a very satisfactory yield (25%),17 the formation of other statis-
tical products being negligible, as was observed by us during pre-
vious work.15,18

Mesylation of the hydroxy group of 3 gave 4 which was followed
by nucleophilic substitution by sodium azide in DMF at 100 �C,
leading to the azido phthalocyanine 5.19 Compound 5 underwent
click reactions with the four selected peracetylated propargyl carbo-
hydrates 6 (the b-glycosides 6-Glc,20 6-Gal20 and 6-Lac20 and the
a-glycoside 6-Man21), in yields of around 95%.22 The resulting
phthalocyanines 7-Glc, 7-Gal, 7-Lac and 7-Man were deprotected
in two steps:23 firstly acidic hydrolysis of the acetal (80% acetic acid
at 70 �C over 6 h), then removal of the acetyl groups in a 2:1:1 meth-
anol–water–triethylamine mixture (Scheme 2).

The solubility of the four deprotected phthalocyanines 8 in
water was evidenced by their UV–vis spectra. Each of the four
phthalocyanines exhibited similar UV–vis spectra in water and
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DMSO, with no influence due to the nature of the carbohydrate
head. They are slightly aggregated in water and monomeric in
DMSO, for example as shown for 8-Glc (Fig. 1). Their solubility in
water is similar to those of the symmetric tetra non-peripheral
glycerol-substituted Zn(II) phthalocyanine as we previously
reported.12a

In conclusion, we have developed an efficient method to pro-
duce monoglycoconjugated water-soluble phthalocyanines con-
taining one of four different carbohydrate moieties. The next step
involves testing these phthalocyanines against different cancer cell
lines to determine their potential selective targeting efficiency, and
to produce other molecules with more complex carbohydrates
which are likely to be more selective.
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95%. Deep blue powder. Rf 0.43–0.45 (20:1 CH2Cl2–EtOH); Rf 0.64 (2:1 CH2Cl2–
THF) and Rf 0.94 for the starting material 1. 13C NMR (CDCl3) d: 170.69, 169.90,
169.78, 169.64 (CH3COO), 160.64–109.93 (aromatic C), 96.57 (C-1), 61.89,
59.19 (C-6, OCH2@), 50.05 (CH2N). HRMS (ESI) calcd for C75H84N11O23Zn [M+H],
1570.5028; found 1570.5013.

23. General method for phthalocyanine deprotection. A solution of phthalocyanine 7
(0.040 mmol, 63 mg for 7-Glc, 7-Gal and 7-Man, 74 mg for 7-Lac) in 80% AcOH
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(20 mL) was stirred for 6 h at 70 �C and then overnight at room temperature.
After concentration, and coevaporation twice from EtOH (2 � 20 mL), the
residue was treated for 2 d at rt in a 2:1:1 MeOH–H2O–Et3N mixture (20 mL).
The solution was evaporated to dryness and coevaporated twice from H2O.
{1(4),8(11),15(18)-Tri-(2,3-dihydroxypropyloxy)-23-[12-((1,4,7,10-tetraoxadode-
cyl)-1H-1,2,3-triazol-4-yl)methyl b-D-glucopyranoside)]}phthalocyaninato Zn(II)
(8-Glc). Obtained quantitatively as described above from compound 7-Glc.
Deep blue powder. UV–vis, kmax (log e): DMSO 700 (5.14), 629 (4.41), 345
(4.50); H2O 650 (4.45), 330 (4.32). HRMS (ESI) calcd for C58H64N11O19Zn [M+H],
1282.3666; found 1282.3663. {1(4),8(11),15(18)-Tri-(2,3-dihydroxypropyloxy)-
23-[12-((1,4,7,10-tetraoxadodecyl)-1H-1,2,3-triazol-4-yl)methyl b-D-galactopy-
ranoside)]}phthalocyaninato Zn(II) (8-Gal). Obtained quantitatively as
described above from compound 7-Gal. Deep blue powder. UV–vis, kmax

(log e): DMSO 700 (5.00), 629 (4.27), 345 (4.35); H2O 650 (4.66), 330 (4.52).
HRMS (ESI) calcd for C58H64N11O19Zn [M+H], 1282.3666; found 1282.3657.
{1(4),8(11),15(18)-Tri-(2,3-dihydroxypropyloxy)-23-[12-((1,4,7,10-tetraoxadodecyl)-
1H-1,2,3-triazol-4-yl)methyl) 4-O-b-D-galactopyranosyl-b-D-glucopyranoside)]}-
phthalocyaninato Zn(II) (8-Lac). Obtained quantitatively as described above
from compound 7-Lac. Deep blue powder. UV–vis, kmax (log e): DMSO 700
(5.18), 629 (4.45), 345 (4.54); H2O 650 (4.57), 330 (4.39). HRMS (ESI) calcd for
C64H74N11O24Zn [M+H], 1444.4194; found 1444.4119. {1(4),8(11),15(18)-Tri-
(2,3-dihydroxypropyloxy)-23-[12-((1,4,7,10-tetraoxadode-cyl)-1H-1,2,3-triazol-
4-yl)methyl a-D-mannopyranoside)]} phthalocyaninato Zn(II) (8-Man). Obtained
quantitatively as described above from compound 7-Man. Deep blue powder.
UV–vis, kmax (log e): DMSO 700 (5.18), 629 (4.45), 345 (4.53); H2O 650 (4.48),
330 (4.35). HRMS (ESI) calcd for C58H64N11O19Zn [M+H], 1282.3666; found
1282.3673.
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